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A~traet--Natural convection in a low Prandtl number, liquid metal gallium was numerically simulated in 
a 2 mm narrow gap test cell to benchmark experiments. One two-dimensional model and three different 
three-dimensional models were tested using a commercial finite element code and compared to an X-ray 
visualization ~xperiment. Significant differences were found between the results obtained in the two- 
dimensional and individual three-dimensional models. The inclusion of the bounding solid walls of the test 
cell in the three-dimensional model resulted in temperature contour profiles which are comparable to the 

experimental visualization in liquid gallium. Copyright © 1996 Elsevier Science Ltd. 

1. IINTRODUCTION 

In a natural convection fluid flow experiment a hori- 
zontal temperature ~;radient is imposed on a fluid layer 
of gallium. Gallium is a low Prandtl number 
(Pr = 0.027) metal and has a melting point of 29.78°C. 
Recently a new, noninvasive, in situ radioscopic 
method of liquid metal flow visualization has been 
developed. This tecEnique uses a real time X-ray radi- 
oscopy system and has been employed to visualize 
particle flow and the morphology of melting and sol- 
idification interface~+ [1-7]. Density and temperature 
fields were visualized during natural convection of 
liquid gallium in a narrow gap test cell. 

Stewart and Weinberg [8, 9] investigated both 
numerically (two-dimensional) and experimentally 
the effect of buoyancy induced flow on the tempera- 
ture distribution arLd heat transfer in a rectangular 
enclosure filled with liquid tin. The two-dimensional 
model did not estimate accurately the experimental 
natural convection flow and heat transfer in a three- 
dimensional cavity. In addition, the temperature pro- 
files were estimated by the authors using radioactive 
tracers and by performing autoradiography on the 
quenched solid. 

Viskanta et aL [10] described a three-dimensional 
numerical model for natural convection in a liquid 
metal (Pr = 0.02) filled cavity and compared their 
results to experimental data. Wolff et al. [11 ] reported 
a combined experimental and two-dimensional 
numerical study of natural convection heat transfer 
and fluid flow in vertical cavities filled with liquid 
metals. Their numerical results did not match the 
experimental temperature measurements, in par- 
ticular at the center of the cavity. In both these papers 
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a crude finite difference grid and a wide gap cavity 
(width ~ 38 mm) were used. Viskanta et al. [10] con- 
cluded that their three-dimensional calculations were 
preliminary and needed a better mesh refinement and 
a larger mesh to get a good match of their results. 
W o l f f e t  al. [11] emphasized the need for highly accu- 
rate three-dimensional numerical simulations. 

The main motivation for this paper is to numerically 
simulate temperature flow fields in a test cell used for 
natural convection experiments in liquid gallium. The 
second motivation for this paper is to provide accurate 
three-dimensional numerical simulations in low 
Prandtl number liquid metals and to compare to 
experimental results obtained via the non-intrusive X- 
ray radioscopy technique described in Koster et al. 
[7]. 

2. EXPERIMENTAL SETUP 

The experimental test cell is described in detail by 
Koster et aL [7]. The test cell was made of Plexiglas. 
The gallium filled cavity had a width of 2 mm. Such a 
narrow gap guarantees a steady-state convective flow 
up to very high Grashof numbers. An adjustable lid 
made of Plexiglas was inserted into the cavity to pro- 
vide a rigid upper surface on the liquid metal and also 
to fix the aspect ratio of the liquid metal in the test 
cell. Lateral thermodes are made of molybdenum- 
cladded copper and have a recirculating flow channel 
through which the heating/cooling fluid flows. The 
top, bottom, front and back walls were thermally insu- 
lated with radiographically transparent plastic insu- 
lation. Plexiglas provides adiabatic thermal boundary 
conditions. Copper thermodes can be considered per- 
fectly conducting at the molybdenum plates. Mol- 
ybdenum plates have only four times higher thermal 
conductivity than gallium (refer to Table 1) and there- 
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NOMENCLATURE 

A aspect ratio, A = L/H u*, v*, w* dimensionless velocities in x, y 
cp specific heat and z coordinates, respectively 
d width of  cavity x, y, z coordinates 
g gravitational acceleration x*, y*, z* dimensionless coordinates. 
Gr Grashof  number 
h heat transfer coefficient 
H height of  cavity Greek symbols 
k thermal conductivity fl coefficient of  thermal expansion 
L length of  cavity ~ ratio of  solid to melt thermal 

n total number of  nodal points at the conductivity 
cold or hot  wall AT  temperature gradient 

Nu Nusselt number x thermal diffusivity 
Nuav average Nusselt number /~ dynamic viscosity 
NUlo~a~ local Nusselt number v kinematic viscosity 
p pressure p density. 

p* dimensionless pressure 

q heat flux Subscripts 
Pr Prandtl number c cold 
R(ui) residual vector h hot 

Ra Rayleigh number i iteration number 
T temperature 0 refers to reference state. 
7* dimensionless temperature 
u velocity vector, u = {u, v, w} 
ui solution vector Superscripts 
u, v, w velocities in the x, y and z m melt 

coordinates, respectively s solid. 

Table 1. Properties of gallium, Plexiglas, molybdenum and copper 

Parameter Symbol Value Units References 

Gallium 
Melting point Tm 29.78 °C [12] 
Volumetric coefficient of /~(373 K) 1.2 x 1 0  - 4  K ~ [12] 
thermal expansion 
Viscosity /t 2.04 x 10 -~ 
Density pm (302.78 K) 6094.70 
Thermal conductivity k m (302.78 K) 28.68 
Specific heat cp (500 K) 384.7 

Plexiglas 
Density ps (293 K) 1190 
Thermal conductivity k s (293 K) 0.20 
Specific heat cp (293 K) 1466 

Molybdenum 
Density (293 K) ps (293 K) 10 200 
Thermal conductivity /d (298.2 K) 138 
Specific heat Cp (298 K) 249.95 

kgm -l s -1 [13] 
kg m -s [12] 
W m - t  K -1 [12] 
J kg -1 K -1 [12] 

kg m -3 [14] 
W m -1 K -l  [14] 
J kg -~ K -~ [14] 

kg m 3 [15] 
W m  -1K -l [15] 
J kg -l  K -l  [15] 

Copper 
Thermal conductivity kS (298.2 K) 393.98 W m -1 K -~ [15] 
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fore do not provide a perfect conducting boundary 
condition at the interface with liquid gallium. gfl ~ H 4 

G r -  V 2 (5) 

3. NUIMERICAL MODEL 

Figure 1 (a) show,; the three-dimensional sketch of 
the model used for numerical simulation of the natural 
convection test cell containing gallium. The overall 
dimensions of the Plexiglas test cell are 50 x 57 x 38 
mm. The top, bottom, front and back side of the 
gallium cavity are surrounded by Plexiglas walls and 
included in one three-dimensional model. The front 
and back walls have dimensions of 50 x 42 x 18 mm, 
the bottom wall has dimensions of 50 x 15 x 38 mm 
and the top wall has dimensions of 50 x 7 x 2 mm. The 
central three-dimensional cavity has dimensions of 
50 x 35 x 2 mm (L x H ×  d) and is filled with pure 
gallium. The molybdenum plates on the thermodes are 
included as solid walls in the model. The dimensions of 
the molybdenum p]Lates are 1 x 46 x 12 mm. Figure 
1 (b) is the sketch of the cavity containing the gallium 
melt. The cavity is differentially heated from the sides, 
with the left wall being the cold wall and the right wall 
being the hot wall. 

4. MATHEMATICAL FORMULATION 

The flow field and temperature distribution is gov- 
erned by the Navier-Stokes and energy equations. 
The governing Navier-Stokes equations, expressing 
conservation of mass, momentum and energy in the 
gallium melt, were nondimensionalized using the fol- 
lowing variables : 

x y * =  Y z*=  z u* u v* v 

w p T--Tc 
W* --  //Kmx I P *  = f/cm x~2 T* Th-Tc"  (1) 

The Boussinesq approximation, in which density is 
constant everywhere except in the gravitational force 
term, is applied to the momentum equation. This 
equation is written as follows : 

p = po[1 - f l ( T -  To)]. (2) 

The Rayleigh number (Ra), Prandtl number (Pr), 
and Grashof numbers (Gr), are defined as follows : 

gfl ~ H 4 

Ra = ( 3 )  
1,,K .m 

Pr - (4) ~rn 

Therefore the dimensionless governing equations 
of conservation of mass, momentum and energy are 
written as (after dropping the * superscript) : 

V" u = 0 (6) 

u" Vu = - Vp + PrV z u (7) 

u" Vv = - Vp+ PrV2v (8) 

u ' V w  = - V p + A R a P r T + P r V Z w  (9) 

u"  V T  = V z T.  ( 1 0 )  

The Plexiglas walls and the molybdenum walls are 
solid entities within the model and therefore must 
have their energy equation solved. Since the walls 
are motionless, the energy equation can be written as 
follows : 

x W 2 T =  0 (11) 

where x s is the thermal diffusivity of the solid entity 
(either Plexiglas or molybdenum depending upon the 
wall in consideration). Taking the same scaling factors 
as those used in the governing equations for the melt, 
we obtain the following non-dimensionalized energy 
equation for the solid walls 

V 2 T =  O. (12) 

No-slip velocity boundary conditions are imposed 
at the top, bottom, front and back rigid walls. These 
four walls have finite thermal conductivity properties. 
The boundary conditions for the outer molybdenum 
hot and cold walls are 

u = 0 T = To a t  x = - 1 mm Vy, Y z  

u = 0  T = T n  a t x = L + l m m  Vy, Vz. (13) 

Perfect thermal contact is assumed at the melt/mo- 
lybdenum interface and the melt/Plexiglas interface, 
so that the conductive fluxes at this boundary are 
equal. From the general heat transfer equation, 

dT 
q = k~x  x (14) 

we may equate the thermal fluxes as 

qm = qS (15) 

which when nondimensionalized yields 

qm = 7q~ (16) 

where 7 = kS/km the ratio of the thermal conductivities 
of the solid wall (either molybdenum or Plexiglas) to 
that of the gallium melt. 
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(a) 

cavity containing 
gal l ium melt  

Molybdenum 
plate(hot side) 

(b) 

H 

Molybdenum 
plate(cold side) 

glas  test cell 

z y  
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I L 
Fig. 1. (a) Sketch of model used for numerical simulation. (b) Three-dimensional fluid cavity. 
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5. NUMERICAL SOLUTION 

Four different models were tested and these are 
listed in Table 2. First a two-dimensional model was 
tested. This model was then extended to a three- 
dimensional cavity. The first three-dimensional model 
considered the fluid only, with idealized adiabatic and 
perfectly conducting boundary conditions. The second 
three-dimensional model considered the fluid and the 
Plexiglas front andi back walls. Finally, a complete 
three-dimensional model was tested which considered 
all the components of the experimental test cell, which 
includes the four Plexiglas walls and two molybdenum 
side walls. Discussions in the Mathematical For- 
mulation section a:ad this section will refer to three- 
dimensional Model III, which is the most complicated 
and complete model. 

The flow is assumed to be steady, laminar, incom- 
pressible and three-dimensional. The nonlinear gov- 
erning equations are discretized and solved numeri- 
cally by using the finite element code FIDAP (Release 
7.51). FIDAP uses the conventional finite element 
Galerkin formulation [16]. Test runs with time-depen- 
dent governing equations were performed for three- 
dimensional Model I using FIDAP at a AT = 50 K. 
The largest change in the maximum velocity between 
successive time steps was 1.3%, while that of the 
maximum pressure was 0.05%. With further increase 
in time, this change in maximum velocity and 
maximum pressure decreased to less than 0.001%. 
These results proved our assumption of steady-state 
solution in a narrow gap to be true. This allowed us 
to use the faster steady-state governing equations for 
further analysis. 

Eight-node continuum brick elements are employed 
for the discretization of temperature and velocity. A 
graded mesh with 50 x 23 x 55 grid points in the x, y 
and z directions is used. The model includes the liquid 
layer, molybdenum walls and Plexiglas walls. The 
liquid layer itself is modeled with 50 x 11 × 41 grid 
points in the x, y and z directions (50 × 2 x 35 mm 3 
liquid volume). In all four models, a nonuniform 
gridding scheme was used ; with more elements at the 
edges of the cavity than at the center of the cavity. 
The properties used in the numerical model for the 
liquid gallium, Pl,exiglas test cell walls, and molyb- 
denum walls are listed in Table 1. 

Grid tests were performed for all four models with 
the maximum velocity and maximum stream function 

as parameters for comparison. For the two-dimen- 
sional model, a grid resolution was chosen which was 
sufficient and does not have an effect on the solution. 
For the three-dimensional models, we chose a grid 
resolution which is sufficient for the accuracy of the 
solutions obtained, but approaches the limits of our 
computer resources. Some of the post-processing was 
done with Corel Photo Paint, Microsoft Excel and 
Sigma Plot software. 

Convergence of the numerical calculations is 
achieved whenever the following criteria are satisfied : 

II u , -u~_,  II 
- -  ~< 10  - 3  ( 1 7 )  

II ui_] II 

II R(ui) II 
- -  ~< 1 0  - 3  ( 1 8 )  

JJ Ro JJ 

where 11"11 is the Euclidean norm, ui is the solution 
vector, and R(ui) is the residual vector (i indicates the 
ith iteration). Because both Vui and R(u) tend to zero 
near the real solution, a combination of these two 
criteria provides a sufficient and effective overall con- 
vergence criterion for all possible situations. 

Nonlinear solutions were obtained by using a Seg- 
regated Solver [16]. The solution strategy for this 
three-dimensional problem was to perform one or two 
iterations with the successive substitution solution 
algorithm and then switching to the segregated solver 
solution algorithm. The strategy of using the slower, 
but more robust successive substitution method in the 
early phase of calculations was to bring the solution 
within the radius of convergence of the faster con- 
verging segregated solver method. 

6. HEAT TRANSFER 

The heat transfer rate by convection can be best 
described by the Nusselt number at the vertical walls. 
Nusselt number is the ratio of the heat transferred by 
convection to the heat transferred by conduction. The 
Nusselt number (Nu) is defined as 

hL 
Nu = - - .  (19) 

k m 

Hauf and Grigull [17] presented a modified equa- 
tion to calculate the local Nusselt number at a wall in 
a differentially side-wall heated cavity based on the 

Table 2. List of different numerical models tested 

Model Configuration 
Mesh size 

Overall Fluid layer 

Two-dimensional model 
Three-dimensional Model I 
Three-dimensional Model II 
Three-dimensional ldodel III 

Fluid only 
Fluid only 
Fluid ; front and back Plexiglas walls 
Fluid ; front, back, top and bottom Plexiglas walls ; 
hot and cold molybdenum walls 

91 x 63 91 x 63  
71×11x51 71×11×51 
71x21×51 71xl lx51  
59x23x55 51xl lx41 
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slope of the temperature distribution curve. The equa- 
tion can be rewritten as follows : 

NUloca I ~ 
wall AT'  

where (OT/SX)wal l is the temperature slope at the wall, 
L is the length of the cavity across which a temperature 
gradient of A T is applied. 

The average Nusselt number (Nu~v) can then be 
obtained by averaging the local Nusselt number over 
all the nodes at either the hot or cold wall. This equa- 
tion can be written as follows : 

N u a .  ¢ - -  

E NUloca 1 
nodes 

where n is the total number of nodal points at the 
wall. 

Figure 2 is a plot of the average Nusselt number vs 
the Grashof number calculated at the cold wall for 
the two-dimensional model and three-dimensional 
Model I. For the two-dimensional model the average 
Nusselt number at the cold wall was obtained by aver- 
aging the local Nusselt number at 63 nodal points, 
while in the three-dimensional Model I the averaging 
was done over a two-dimensional surface consisting 
of 561 nodal points. In the two-dimensional case, up 
to a Grashof number of 10 6, the Nusselt number 
increases rapidly by convection and then slows down 
with further increase in Grashof number. However in 
the case of the three-dimensional model, the Nusselt 
number increases almost linearly with increase in 
Grashof number. It should also be noted that for the 
same Grashof number, the Nusselt number is lower 

in the three-dimensional case compared to the two- 
dimensional case. 

Table Curve ® two-dimensional software was used 
(20) to obtain a correlation between the average Nusselt 

number (Nu,v) and the Grashof number (Gr) by curve 
fitting. Equations (22) and (23) are the correlations 
obtained for the two- and three-dimensional Model I, 
respectively. 

Two-dimensional model: 

Nuav = 0.083 + O.052Gr °'293 (22) 

Three-dimensional Model I: 

NUav = 0.882+9.312 × 1 0 - 7 G r  0"909. (23) 

(21) Figure 2 shows that the average Nusselt number vs 
the Grashof number relationship is almost linear for 
three-dimensional Model I. Therefore equation (23) 
can be replaced by a linear correlation shown below 
in equation (24). 

Three-dimensional Model I: 

Nuav = 1 + 2 x 10 7 Gr. (24) 

7. TEMPERATURE FIELD VISUALIZATIONS 

Figure 3 is a velocity vector plot in the fluid from 
the central plane of the three-dimensional Model III 
for a Grashof number of 18.9 x 10 6. Here the right 
side is the hot end, while the left side is the cold end. 
We see that there is a single roll cell rotating in the 
counter clockwise direction as expected for natural 
convection. As the main goal of our simulations is 
the comparison with experimentally visualized density 

6 
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0 
0.0e+0 

-- 3-D Model  I 

I I I 

4.0e+3 8.0e+3 1.2e+4 

Grashof Number  (Gr x 10 -3) 

1.6e+4 

Fig. 2. Average Nusselt number at the cold wall vs the Grashof number for the two-dimensional model 
and three-dimensional Model I. 
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Fig. 3. Velocity vector plot of the central plane from three-dimensional Model III. 

and temperature fields, we will focus hereafter on tem- 
perature plots. 

Figure 4(a,b) shows the nondimensional tem- 
perature contour plots obtained for different Grashof 
numbers for the two-dimensional model and the three- 
dimensional Mode] I, respectively. As the Grashof 
number increases, the temperature isotherms tend to 
flatten out gradually. Hot fluid is moving upwards at 
the right side wall and downward at the cold wall. It 
can be seen that there are significant differences in 
the contours between two-dimensional and idealized 
three-dimensional :model (wherein the front, back, 
bottom and top walls are adiabatic; the heated side 
walls are perfectly conducting.) For three-dimensional 
Model I, we have plotted the temperature contour in 
the central plane of the fluid. From the plots it is 
apparent that for all Grashof numbers the tem- 
perature contours are almost completely different 
between the two models. In the two-dimensional 
model, the isotherms seem to bend downward and 
then back upward dose to the cold wall and vice versa 
at the hot wall. However in the case of the three- 
dimensional Model I no such trend was noticed. These 
differences confirm that two-dimensional models can- 
not really be used for comparison to three-dimen- 
sional experiments, except maybe to obtain an initial 
approximation for an assessment of the underlying 
physics. 

In a next refinement, the front and back Plexiglas 
walls were added to the three-dimensional model. In 
the actual experiment, the front and back walls were 
made of Plexiglas and had a finite thermal conduc- 
tivity. The ratio of thermal conductivity between the 
melt and the Plexiglas is km/ks~ 140. A finite con- 
ductivity will result in heat losses through the solid 
walls. Three-dimensional Model II included the solid 

walls as an entity within the model, perfect thermal 
contact was assumed at the melt/Plexiglas interface 
and the conductive fluxes at this boundary were set to 
be equal. At the outer boundary of the Plexiglas, the 
boundary condition is set to adiabatic. 

Figure 5(a, b) shows the averaged nondimensional 
temperature contours for three-dimensional Model I 
and three-dimensional Model II at Gr = 15.8 x 106, 
respectively. The average temperature contours are 
calculated by averaging the temperatures across 11 
planes in the melt for three-dimensional Model I and 
for three-dimensional Model II. In the actual exper- 
iment the image that we obtain is an integrated image 
along the radiation path. Therefore in order to com- 
pare numerical models to the experimental results the 
temperatures across the vertical planes of the numeri- 
cal models were averaged. It can be seen that the 
temperature contours are steeper in the three-dimen- 
sional Model II with solid walls than those in three- 
dimensional Model I with melt and adiabatic walls. 

Although there are differences between the tem- 
perature contours for the two three-dimensional 
models as shown in Fig. 5(a, b), these differences are 
not clearly apparent on looking at the plots. Therefore 
in order to illustrate these differences clearly, we have 
plotted the average nondimensional temperatures at 
z *=  1.0 and Gr = 15.8x 106 for the three-dimen- 
sional Model I vs three-dimensional Model II in Fig. 
5(c). If this plot is a straight line, then there are no 
differences between the two three-dimensional 
models. However Fig. 5(c) is not a straight line and 
therefore the three-dimensional Model I differs from 
three-dimensional Model II. Although the differences 
are minor, solid walls cannot necessarily be neglected. 

Our next step was to include all the solid walls in 
our three-dimensional Model III. In addition to the 
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Hot  

Fig. 4. Nondimensional temperature contours. (a) Two-dimensional model. (b) Central plane in the test 
cell for three-dimensional Model I. 

Plexiglas front, back, top and bottom walls, we also 
included the molybdenum hot and cold walls. The 
copper thermodes are considered perfectly conduct- 
ing. Once again perfect thermal contact was assumed 
at the melt/molybdenum interface, so that the con- 
ductive fluxes at this boundary are equal. The three- 
dimensional Model III is believed to be the closest 
approximation to the actual experimental test cell. 
Figure 6(a, b) shows the average nondimensionless 
temperature contours for three-dimensional Model I 
and three-dimensional Model III at Gr = 15.8 x 10  6, 

respectively. The average temperature contours are 
calculated by averaging the temperatures across 11 
planes for three-dimensional Model I and for three- 
dimensional Model III. Compared to the three-dimen- 

sional Model I the temperature contours for the three- 
dimensional Model III tend to flatten out at the center 
of the test cell at higher Grashof numbers. 

Figure 6(c) is a plot which compares the average 
temperature contours at z* = 1.0 and Gr = 15.8 x 106 
for the three-dimensional Model I with that of three- 
dimensional Model III. This plot clearly illustrates the 
magnitude of the deviation in the average tem- 
peratures at a particular location, with and without 
the inclusion of the solid walls of the test cell. This 
deviation is much larger than the expected deviation 
shown in Fig. 5(c), since the three-dimensional Model 
II only includes two walls, whereas in the three-dimen- 
sional Model III all six surrounding walls are included. 

Figure 7(a,b) shows the nondimensional tem- 
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Fig. 5. Average nondimensional temperature contours. (a) 
Three-dimensional Model I. (b) Three-dimensional Model 
II. (c) Comparison of three-dimensional Model I vs three- 

dimensional Model II. 
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Average Non-dimensional Temperatures for 3-D Model I 
(C) (at z' = 1.0 and Gr = 15.8 x 106) 

Fig. 6. Average nondimensional temperature contours. (a) 
Three-dimensional Model I. (b) Three-dimensional Model 
III. (c) Comparison of three-dimensional Model I vs three- 

dimensional Model III. 

perature contour ]plots of the central plane and that 
of the average temperatures across 11 planes for three- 
dimensional Model III at Gr = 15.8 x 10 6, respectively. 
These plots show that a difference does exist if we just 
consider the central plane only, as opposed to an 
average temperature across the width of the test cell. 

Figure 7(c) is a comparison of the temperatures at 
the central plane to that of the average temperatures 
in the three-dimensional Model III at z* = 1.0 and 
Gr = 15.8 x 10 6. It can be seen that although there is 
a slight deviation from the straight line in this plot, 
it is not significant. Even though the experimental 
technique is an integrating technique, we need not 
average the calculated temperatures across the width 
of the test cell in order to get a better approximation 

to the experimental results. We can conclude that 
using the temperatures from the central plane of the 
fluid cavity is sufficient to get a good numerical solu- 
tion to compare to the integrating X-ray radioscopy 
experimental image. However averaging may be 
necessary if one uses a cavity larger than the narrow 
gap cavity used in the present experiments. 

Figure 8(a, b) shows the temperature contours for 
Gr = 15.8 x 10  6 from the numerical simulation using 
three-dimensional Model III and the experimental 
radioscopic visualization, respectively (Koster et al. 
[7] described in detail the procedure used for obtaining 
the experimental radioscopic visualization image). 
These plots are color coded in black and white to 
simulate interferogram. For the same Grashof 
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Fig. 7. Nondimensional temperature contours. (a) Central plane in the test cell cavity for three-dimensional 
Model III. (b) Average for the three-dimensional Model III. (c) Comparison of the central plane vs the 

average nondimensional temperatures for three-dimensional Model III. 

Hot 

numbers, the contour plots between the numerical 
simulation and the experimental image are in good 
agreement. 

The experimental technique, however, is not as per- 
fect as numerical simulation which is discussed by 
Koster et al. [7]. Listed below are a few limitations that 
exist when we try to compare the numerical results to 
the experimental results in the natural convection of 
gallium : 

(1) A lead masking must be applied to the test cell, 
covering all parts except the cavity. This was 
necessary in order to prevent Bragg scattering 
from metal parts such as the thermodes. This 
masking reduces the field of view of the liquid 
layer by about 2 mm (~  5%) of the cavity size. 
A loss of some information on all four sides of 
the liquid layer is the consequence. 

(2) The X-ray beam is slightly divergent (4°). We 
did not simulate this radiation path in our 
numerical calculations. 

(3) In the numerical modeling, we assumed adia- 
batic outer planes for the central volume that 
includes side walls and liquid layer. In the actual 
experiment this is not true due to heat losses. 

8. CONCLUSIONS 

Two- and three-dimensional modeling of steady 
natural convection in a narrow gap of a low Prandtl 
number pure liquid metal gallium was performed. 
Numerical simulation revealed that the temperature 
profiles obtained from the two-dimensional model 
differ significantly from those obtained in the three- 
dimensional models. Three different three-dimen- 
sional numerical models are compared to each other 
and to that of an experimental radioscopic visual- 
ization. With the inclusion of solid walls in the three- 
dimensional numerical model, the temperature con- 
tours were in good agreement with the experimental 
visualization. Using the temperature field of the cen- 
tral plane of the three-dimensional Model III is found 
to be sufficient to get a good numerical solution for 
comparison with the integrated experimental vis- 
ualization of the temperature field in a narrow gap. 
The numerical modeling substantiates that solid walls 
with their finite heat conductivity play a very impor- 
tant part in liquid metal convective studies and cannot 
be neglected in numerical modeling. 
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Fig. 8. Average temperature distribution in liquid gallium at AT = 50 K and Gr = 15.8 x 106. (a) Numeri- 
cally simulated using three-dimensional Model III. (b) Experimentally determined. 
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